fbpx
Netint technologies

Cloud Gaming Primer:
Key Concepts from Blacknut’s Olivier Avaro

Jan Ozer

Jan Ozer

is Senior Director of Video Marketing at NETINT.

Jan is also a contributing editor to Streaming Media Magazine , writing about codecs and encoding tools. He has written multiple authoritative books on video encoding, including ‘Video Encoding by the Numbers: Eliminate the Guesswork from your Streaming Video’ and ‘ Learn to Produce Video with FFmpeg: In Thirty Minutes or Less’ and has produced multiple training courses relating to streaming media production.

Recently, our Mark Donnigan interviewed Olivier Avaro, the CEO of Blacknut, the world’s leading pure-player cloud gaming service. As an emerging market, cloud gaming is new to many, and the interview covered a comprehensive range of topics with clarity and conciseness. For this reason, we decided to summarize some of the key concepts and include them in this post. If you’d like to listen to the complete interview, and we recommend you do, click here. Otherwise, you can read a lightly edited summary of the key topics below.

For perspective, Avaro founded Blacknut in 2016, and the company offers consumers over seven hundred premium titles for a monthly subscription, with service available across Europe, Asia, and North America on a wide range of devices, including mobiles, set-top-boxes, and Smart TVs. Blacknut also distributes through ISPs, device manufacturers, OTT services, and media companies, offering a turnkey service, including infrastructure and games that allow businesses to instantly offer their own cloud gaming service.

Cloud Gaming Primer - the key points covered in the interview

The basic cloud gaming architecture is simple.

The architecture of cloud gaming is simple. You take games, you put them on the server in the cloud, and you virtualize and stream it in the form of a video stream so that you don’t have to download the game on the client side. When you interact with the game, you send a command back to the server, and you interact with the game this way.

Of course, bandwidth needs to be sufficient, let’s say six megabits per second. Latency needs to be good, let’s say less than 80 milliseconds. And, of course, you need to have the right infrastructure on the server that can run games. This means a mixture of CPU, GPU, storage, and all this needs to work well.

But cost control is key.

We passed the technology inflection point where actually the service becomes to be feasible. Technically feasible, the experience is good enough for the mass market. Now, the issue is on the unique economics and how much it costs to stream and deliver games in an efficient manner so that it is affordable for the mass market.

Public Cloud is great for proof of concept.

We started deploying the service based on the public cloud because this allowed us to test the different metrics, how people were playing the service, and how many hours. And this was actually very fast to launch and to scale…That’s great, but they are quite expensive.

But you need your own infrastructure to become profitable.

So, to optimize the economics, we built what we call the hybrid cloud for cloud gaming, which is a combination of both the public cloud and private cloud. So, we must install our own servers based on GPUs, CPUs, and so on so we can improve the overall performance and the unique economics of the system.

Cost per concurrent user (CCU) is the key metric.

The ultimate measure is the cost per concurrent user that you can get on a specific bill of material. If you have a CPU plus GPU architecture, the game is going to slice the GPU in different pieces in a more dynamic manner and in a more appropriate manner so that you can run different games and as many games as possible.

GPU-only architectures deliver high CCUs, which decreases profitability.

There are some limits on how much you can slice the GPU and still be efficient and so there are some limits in this architecture because it all relies on the GPU. We are investigating different architectures using a VPU, like NETINT’s, that will offload the GPU of the task of encoding and streaming the video so that we can augment the density.

VPU-augmented architectures decrease CCU by a factor of ten.

I think in terms of some big games, because they rely much more on the GPU, you will probably not augment the density that much. But we think that overall, we can probably gain a factor of ten on the number of games that you can run on this kind of architecture. So, passing from a max of 20, 24 games to running two hundred games on an architecture of this kind.

Which radically increases profitability.

So, augmenting the density by a factor of ten means also, of course, diminishing the cost per CCU by a factor of ten. So, if you pay $1 currently, you will pay ten cents, and that makes a whole difference. Because let’s assume basic gamers will play 10 hours per month or 30 hours per month; if this costs $1 per hour, this is $30, right? If this is ten cents, then costs are from $1 to $3, which I think makes the match work on the subscription, which is between 5 to 15 euros per month

The secret sauce is peer-to-peer DMA.

[Author’s note: These comments, explaining how NETINT VPU’s deliver a 10x performance advantage over GPUs, are from Mark Donnigan].

Anybody who understands basic server architecture, it’s not difficult to think, wait a second, isn’t there a bottleneck inside the machine? What NETINT did was create a peer-to-peer sharing inside the DMA (Direct Memory Access). So, the GPU will output a rendered frame, and it’s transferred inside memory, so that the VPU can pick that up, encode it, and there’s effectively zero latency because it’s happening in the memory buffer.

5G is key to successful gameplay in emerging markets.

[Back to Olivier] What we’ve been doing with Ericsson is using 5G networks and defining specific characteristics of what is a slice in the 5G network. So, we can tune the 5G network to make it fit for gaming and to optimize the delivery of gaming with 5G.

So, we think that 5G is going to get much faster in those regions where actually the internet is not so great. We’ve been deploying the Blacknut service in Thailand, Singapore, Malaysia, now in the Philippines. And this has allowed us to reach people in regions where there is no cable or bandwidth with fiber.

Latency needs to be eighty milliseconds or less (much less for first-person shooter games).

You can get a reasonably good experience at 80 milliseconds for most games. But for first-person shooter games, you need to be close to frame accuracy, which is very difficult in cloud gaming. You need to go down to thirty milliseconds and lower, right?

That’s only feasible with the optimal network infrastructure.

And that’s only feasible if you have a network that allows for it. Because it’s not only about the encoding part, the server side, and the client side; it’s also about where the packets are going through the networks. You need to make sure that there is some form of CDN for cloud gaming in place that makes the experience optimal.

Edge servers reduce latency.

We are putting a server at the edge of the network. So, inside the carrier’s infrastructure, the latency is super optimized. So that’s one thing that is key for the service. We started with a standard architecture, with CPU and GPU. And now, with the current VPU architecture, we are putting whole servers consisting of AMD GPU and NETINT VPU. We build the whole package so that we put this in the infrastructure of the carrier, and we can deploy the Blacknut cloud gaming on top of it.

The best delivery resolution is device dependent.

The question is, again, the cost and the experience. Okay? Streaming 4K on a mobile device does not really make sense. The screen is smaller, so you can screen a smaller resolution and that’s sufficient. On a TV, likely you need to have a bigger resolution. Even if there is a great upscale available on most TV sets, we stream 720p on Samsung devices, and that’s super great, right? But of course, scaling up to 1080p will provide a much better experience. So, on TVs and for the game that requires it, I think we’re indeed streaming the service at about 1080p.

Frame rates must match game speed.

When playing a first-person shooter, if you have the choice and you cannot stream 1080p, you would probably stream 720p at 60 FPS rather than 1080p at 30 FPS. But if you have different games with elaborate textures, the resolution is more important, then maybe you will actually select more 1080p and 30 fps resolution.

What we build is fully adaptable. Ultimately, you should not forget that there is a network in between. And even if technically you can stream 4K or 8K, the networks may not sustain it. Okay? And then you’ll have a worse experience streaming 4K than at 1080p 60 FPS resolution.

Related Article

Capped CRF
NETINT Symposium

Save Bandwidth with Capped CRF

What You Can Do with a VPU: Save Bandwidth with Capped CRF   Video engineers are constantly seeking ways to deliver high-quality video more efficiently